SIMD-enhanced libc string functions
how it's done

Robert Clausecker <fuz@FreeBSD.org>
Getz Mikalsen <getz@FreeBSD.org>

Common Tasks

* copying strings (strcpy, memcpy, ...)

* finding string length (strlen, strnlen, ...)

* finding characters (strchr, memchr, ...)

* comparing strings (strcmp, memcmp, ...)
* finding substrings (strstr, memmem, ...)
* splitting at delimiters (strspn, strcspn, ...)

Common Tasks

* copying strings (read then write)

* finding string length (read then compare)
* finding characters (read then compare)

* comparing strings (read then compare)

* finding-substrngs (complicated)

* splitting at delimiters (read then set match)

What does that mean?

read

* char by char until end of string

* one load/compare/conditional branch per character
write

* char by char until end of string

* one write per character

compare

* char by char until match or end of string

* one compare/conditional branch per character

What does that mean?

read

* char by char until end of string

* one load/compare/conditional branch per character (slow)
write

* char by char until end of string

* one write per character (slow)

compare

* char by char until match or end of string

* one compare/conditional branch per character (slow)

Conclusion

Conclusion

Strings suck

What can we do about that?

* Get rid of strings (oof...)

* special-purpose instructions (arch dependent)
— speed varies depending on CPU model
- often only memcpy(), memset() supported

e strange hacks (hmm...)

SIMD

Your new best friend

SIMD

* Single Instruction Multiple Data

* SIMD register: short arrays of numbers

* common lengths: 16, 32, 64 bytes

* same operation on all elements

* but as fast as scalar operations

* SIMD with 16 bytes: 16x scalar performance

Scalar vs. SIMD

Al]

¢YVV

Cl]

Scalar vs. SIMD

e

>

Al

YYVYY

typical SIMD operations

Arithmetic (integer/FP)

* addition, subtraction, multiplication, ...
Logic

* element-wise comparison, and, or, xor, ...
Data transfer

* read, write, extract masks, ...

... many more

Strings and SIMD

How can this help us with string processing?

Strings and SIMD

How can this help us with string processing?
* load multiple characters at once
* process them simultaneously

* profit?

Difficulties

\0

Difficulties

\0

Difficulties

\0

Difficulties

Difficulties

* We can easily overshoot the string's end

* For nul-terminated strings, we won't know
where that Is until we see the nul byte

Do we have to iterate char-by-char after all?

What can we do?

What can we do?

String bounds are fictious

What can we do?

String bounds are fictious
Let's overcome them!

Overcoming array bounds

* the computer does not know what an array is

* it only knows that there's memory at some
addresses but not at others

Overcoming array bounds

* the computer does not know what an array is

* it only knows that there's memory at some
addresses but not at others

thus:
* If we don't go too far out of bounds, it'll be fine!
* C doesn't let us, so let's use assembly

How far Is too far?

* Memory Is organised in pages
* size: arch dependent, usually 4096 bytes
* pages are either accessible entirely or not at all

* there is no more fine-grained memory
protection

~ (check out CHERI, it's cool)

How far Is too far?
* If at least one byte of a string is on a page, the
whole page is accessible
* aligned accesses never cross page boundaries
thus:
* If we're careful, it might just work!

What does that look like?

What does that look like?

What does that look like?

What does that look like?

What does that look like?

Writing Strings

Can't use the same approach:

e overreads are fine, overwrites are no good

Writing Strings

Can't use the same approach:

e overreads are fine, overwrites are no good
Instead

* write (possibly unaligned) chunks

* last write may overlap previous writes

Writing Strings

Writing Strings

Writing Strings

Writing Strings

\0

Comparing Strings

Can't use the same approach
 strings may have different misalignment
e can't fix this after loading with SSE2

Comparing Strings

Can't use the same approach

 strings may have different misalignment

e can't fix this after loading with SSE2

Instead

* do aligned reads to check for nul bytes

* then unaligned reads to compare characters

Comparing Strings

\O0

\0

f

Comparing Strings

o)

0}

b

a

r

b

a

z

\0

\0

f

Comparing Strings

0]

(0]

b

a

r

b

a

4

\0

\0

f

Comparing Strings

0]

(0]

b

a

r

b

a

4

\0

\0

f

Comparing Strings

0]

b

a

Z

\0

\0

f

Comparing Strings

0]

b

a

Z

\0

\0

f

Comparing Strings

0]

b

a

Z

\0

\0

Comparing Strings

f o) \0

Comparing Strings

f o) \0

copy to bounce buffer on stack

f 0 \O

Comparing Strings

f o) \0

copy to bounce buffer on stack

Set Matching

strespn('foo bar", " \t\n");
 matches each char in string against set
* portable approach: Muta / Langdale algorithm

http://0x80.pl/articles/simd-byte-lookup.html
* can we do better?

http://0x80.pl/articles/simd-byte-lookup.html

Set Matching

The Intel way: pcmpistrm

* packed compare implicity-terminated string,
return mask

* set matching and lots of other features
* conveniently also checks for nul terminators
* probably also brews coffee If you ask nicely

String A (xmm1) String B (xmm2/mem)

11B: signed word compares

| _ imm8[1:0] =

: EAX/RAX Detgrmlne end -of- Compare all pairs of 00B: unsigned byte compares
| string and mark A B 01B: unsigned word compares
I EDX/RDX invalid elements (Ai, Bj) 10B: signed byte compares

|

|

__________ I .
PCMPESTR* only ‘/BoolResD il

imm8[3:2] =
00B: Equal any
01B: Ranges
10B: Equal each
11B: Equal ordered

Aggregation function

IntRes1

x0B: don't negate IntRes1

01B: negate all bits of IntRes1

11B: negate only bits of IntRes1
corresponding to valid
elements in String B

Optional boolean
negation

} imm8[5:4] =

IntRes2

| 1 T
imm8[6] = |
0: index encodes least signifi |
cant true bit of IntRes 2 :

1: index encodes most signift |
|

|

|

|

|

imma[6] =
0: Return zero-extended IntRes?
1: expand IntRes2 to byte (word)

mask

Generate mask

v

| XMMO |

Generate index

v

| ECX(RCX) |

cant true bit of IntRes 2

PCMP*STRI only PCMP*STRM only

Substring Matching

That means strstr(), memmem()
- really tricky

- most fancy algorithms are optimised for long
strings, but our strings are usually short

- WIip

Current Progress

* 2023 rework of the libc string functions for amd64
— paid by The FreeBSD Foundation
— almost all of <string.h>
— for amd64 baseline (SSE2), some for x86-64-v2
- landed for 14.1-RELEASE

* |ater ports as part of GSoC 2024
— AArch64 by getz@ (acceptance testing in progress)
~ riscv64 by strajabot@ (work In progress)

GB/s

20
18
16
14
12
10

o N A O ©

Results (amd64)

H pre
M scalar
SSE

il Jadlal, “

3 & N & 5)) N 2 S\ N
(,Q @) & 8 (,Q (,Q (\ gQ (,Q \Q’ @) @Q
Y N O N Q N & 0 S N N & & o o
N & N N & Q & N & 2 \° & S) N
Q & (QQ/ é\e > & @) > {5\6 4 6\@
SH 24
S &

AMDG64 <-> Aarch64

Background

* Project as part of Google Summer of Code 2024
e Port amd64 SIMD libc optimizations to Aarch64
* Another contributor ported to RISC-V

» Several functions already had efficient implementations as part of
the Arm Optimized Routines repository in src/contrib

* Several functions had less efficient implementations.
e Some functions missing

e Write all the string functions!

NMost common * Bit scanning instructions (minor variations)

Performed in a GPR after a match is found.

instructions are available | ;e comparisons

upper lower upper lower

) xmrn_l (1) Irorgg m
(2) xmm2/m128 (2) Zn
. op1

returns

PCMPEQB (packed compare for equality bytes) CMEQ (compare bitwise equal)

Some require extra fiddling

* For counted string functions we avoid branches by inducing a “fake” match in the match mask
where the buffer ends.

/* end of buffer will occur in next 32 bytes */ .Ltail:
.Ltail: ldr qo, [x8, x11]
movdqu (%rdi, %rbx, 1), %xmmoO ldr ql, [x8, x10]
pxor %xmml, %xmml ldr qQ2, [x8]
pcmpegb (%rdi, %rsi, 1), %xmml
pcmpegb (%rdi), %xmm@ cmeq vl.16b, vl1.16b, #0
pmovmskb %xmml, %r8d cmeq v0.16b, v0.16b, v2.16b
pmovmskb %xmm@, %r9d
bts %edx, %r8d shrn vl.8b, v1.8h, #4
test %r8w, %r8w shrn v0.8b, v0.8h, #4
jnz .Lnul_found fmov x6, dil
Xor $oxffff, %rod fmov x5, do
jnz .Lmismatch
mov x13, #0xf
1sl x4, x2, #2
1sl x4, x13, x4
orr x3, X6, x4
cmp X2, #16
csel x6, x3, x6, lo
cbnz x6, .Lnulfound

cbz x5, .Lmismatch

* When buffer located at end of a page
I—_ItOW tOt bihca reftél not to * No variable shift for SIMD registers
Step INto the VOl

PSHUFB xmm1, xmm2/m128 (SS3

__m128i _mm_shuffle_epi8 (__m128i a,__m128i b)
upper lower
upper lower
xmm1 15|14 13121110y 9|87)6]5)14)]3]12]1]0
a \] 1) dZtn1514131211109876543210
ata

5
xmm2/m128 2 Zm
b indices
\/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/
xmmt ®) 2
returns returns
each byte of xmm2/m128:

bit 7 == Ospecifies copying, bit3:0 specifiesOto 15
bit7 == 1specifieszeroclearing

movdqga
movdqga
mov

mov

mov

shl

mov

shl
movdqga
movdqga
pcmpegb
pcmpegb
pmovmskb
pmovmskb
test
lea
cmovz
test
lea
cmovz
movdqu
movdqu

(%rdi), %xmmoO
(%rsi), %xmm2
$-1, %r8d

$-1, %rod

%eax, %ecx

%cl, %r8d

%edx, %ecx

%cl, %rod

%xmm@, —-40(%rsp)
%xmm2, —-24(%rsp)
%xmml, %xmmo
%xmml, %xmm2
%xmmd, %rlod
%xmm2, %rlld
%r8d, %rlod
-40(%rsp), %r8
%rdi, %r8

%rod, %rilld
-24(%rsp), %r9
%rsi, %r9

(%r8, %rax, 1), %xmmoO
(%r9, %rdx, 1), %xmmé

amdo64

bic
and
ldr
ldr
adrp
add

x8, x0, #0xf

x9, x0, #0xf
qo, [x8]
ql, [x10]

x14, shift_data
x14, x14, :lol2:shift_data

/* heads may cross page boundary, avoid
unmapped loads */

tst X5, X3
b.eq of
1ldr q4, [x14, x9]
tbl v0.16b, {v0.16b}, v4.16b
.section .rodata
.p2align 4
shift_data:

.byte 0, 1, 2, 3, 4, 5, 6, 7

.byte 8, 9, 10, 11, 12, 13, 14, 15
fill 16, 1, -1

.size shift_data, .-shift_data

Aarch64

* Reducing the match from 128 -> 64 bits

* No pmovmskb in Aarch64 but shrn is a good

.SO me req uire enough substitute
|mag|nat|on » Several solutions available

PMOVMSKB reg, xmm1 (S2
VPMOVMSKB reg xmml (Vl
nt _| _m ask_ep (__m128ia)

upper lower

mxmmilllllllllllllllll

s10r63 upper lower

@ rg [Oockear IIIIIIIIIIIIIIIII (1 Zn

sums The highest bitof each byte of (1) is copied to each bitof (2). op1
Upper bits of (2) are zero cleared. \—i/ \—i/ ‘&/ \—i/ ‘i/ ‘—i/ \—i/ ‘—i/
0

VPMOVMSKB reg ymml (V2
e - 2) zd [0 0 0 0 0 0 0
uwmmlllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII returns
31 0
@ = [T
s The highest bitof each byte of (1) is copied to each bitof (2).

1f(2) is a 64-bitreg, upper bits of (2) arezero cleared.

Simple strlen(3)

pxor %xmml, %xmml
pcmpegb (%rdi), %xmml
pmovmskb %xmml, %eax
test %eax, %eax
add $16, %rdi

jz 1b

/* match found in loop body */
tzcnt %eax, %eax

sub %rsi, %rdi
lea -16(%rdi, %rax, 1), %rax
ret

.Lloop:

.Ldone:

ldr

cmeq
shrn
fcmp
b.eq
fmov

sub
rbit
clz
lsr
add

qo, [x10, #16]!
v0.16b, v0.16b, #0
v0.8b, v0.8h, #4
do, #0.0

.Lloop

x1, do

X0, x10, x0
x1, x1

x3, X1

X3, X3, #2

X0, X0, x3

Notable Alternatives

* UMAXYV for the hot path then SHRN on exit
beneficial for long strings

e PCMEQ to turn matches into Oxff, then ORR with 0, 1, ..., 15, and
finally UMINV to find the index of the first mismatch (or -1 if there is
none)
beneficial for very short strings

Some require a lot of imagination

e str(c)spn(3) greatly benefits from the SSE4.2 PCMPISTRI instruction
 Really tricky to port, heavy use of slow tbl instruction
e Current implementation with a lookup table (LUT) for >2 byte sets

* Empty set degrades to strlen(3), 1 char set degrades to strchrnul(3)

Future work

* Implement the Muta / Langdale algorithm for Aarch64

* SVE support D43306

 Add an ARCHLEVEL flag for Aarch64

* Port to AVX2/AVX-512, SVE

* Locale stuff (nasty)

e strstr(3)

* Possible other areas that could benefit from SIMD optimizations

https://reviews.freebsd.org/D43306

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

