
Managing Resources in
FreeBSD Bus Drivers

John Baldwin
EuroBSDCon

22 September 2024

Background: Buses and Bridges

• Computer Systems contain multiple components that need to
communicate
• Processors, I/O Devices, Memory Controllers

• Components are connected to communication channels (“buses”)
• Bridges are a special type of device that are connected to two or

more buses
• Bridges forward requests between components on different buses
• Might need to translate messages

• Components organized in a hierarchy

Device Hierarchy

I/O Controller

CPU CPU RAM RAM

Graphics
Adapter

SATA
Controller

Network
Interface

USB
Controller

SATA Disk
Drive Keyboard Mouse

System Bus PCI Express Bus

USB BusSATA Bus

Background: Device Resources

• Access to registers from application CPU (MMIO)
• Interrupting the CPU
• “Where does my interrupt go?”

x86 Memory Address Space

RAM

0

3.5G
MemIO

RAM

4G

MemIO?

264

APIC / MSI

SATA

USB

NIC

VGA / GPU

ISR

Rx Desc

Tx Desc

Bridges and I/O Windows

• Bridges can use I/O windows to provide resources for child devices
• Windows claim a region of address space
• Child device resources are subsets of window address space
• Some bridges might translate resources
• E.g. non-x86 top-level PCI bridges might map I/O ports to a range of MMIO

PCI Bridge Windows

3.5G

MemIO

4G
APIC / MSI

Bridge #3

Bridge #2

Bridge #1

VGA / GPU

USB

NIC

SATA

Bus Devices in FreeBSD

• Any device that has child devices is a bus device
• Physical buses are a single device
• PCI buses, ISA (LPC) buses

• Bridges are also bus devices
• Child of a bus device
• Another bus device as a child

• Pseudo buses
• nexus0
• ACPI, simplebus

FreeBSD Device Tree
Nexus

ACPI

Host to PCI Bridge

PCI Bus

GPU PCI to PCI Bridge PCI to PCI Bridge

USBNIC SATA

Bus Drivers and Resources

• Bus drivers provide access to shared resources for children
• Must avoid resource conflicts
• Must provide valid resources
• MMIO regions within the window
• Interrupts device is connected to

• Must permit child devices to use allocated resources
• Read/write registers via MMIO
• Setup/teardown interrupt handlers

Resource Managers: struct rman

• Describe a subdividable resource via addressable ranges
• Effectively a special purpose address space manager
• Can describe either “real” address spaces (e.g. CPU physical) or virtual

address spaces (IRQs for interrupt pins)
• Initialized with absolute bounds of address range and one or more

available regions which can be sub-allocated
• Single allocated range described by struct resource object
• Avoids resource conflicts

Device Resources

• Resources belonging to devices are named by a tuple of type and
resource ID (rid)
• Types include SYS_RES_MEMORY, SYS_RES_IRQ, PCI_RES_BUS
• Bus defines scheme for resource IDs
• ACPI, simplebus use 0..N for each type
• PCI uses PCIR_BAR(x) for BARs, 0 for INTx, 1…N for MSI/MSI-X

Resource Lists: struct resource_list

• Holds linked-list of struct resource_list_entry objects
• Each resource list entry (rle) contains resource type, rid, size, range
• Existence of a resource list entry does not allocate backing resources

from the system (e.g. MMIO range)
• Backing resources are allocated from a resource manager, and the

associated struct resource object is stored in the rle

Device Resource States

• Buses which can identify resources of children should reserve device
resources after enumerating a device and keep them reserved as long
as they are valid (even if a driver hasn’t allocated them)
• Resource is allocated once a child device driver has requested it
• Allocated resources must be activated to use (read/write, add

interrupt handler)
• Typically via RF_ACTIVE

• Memory and I/O port resources must be mapped for use with
bus_read/write_*

Resource Lists: API

• Bus driver should store resource list in per-device instance variables
(ivars)
• resource_list_init/free() to setup and teardown
• Add new resources via resource_list_add()
• If bus knows about resource, reserve it via
resource_list_reserve()
• resource_list_alloc() and resource_list_release() are

helpers to use in bus_alloc_resource and
bus_release_resource DEVMETHODs

Generic Helper Routines

• Multiple groups of routines suitable for use either as DEVMETHODs
directly, or can be used to as helpers to implement DEVMETHODs
• bus_generic_<method>
• bus_generic_rl_<method>
• bus_generic_rman_<method>

Generic Bus Methods: bus_generic_*

• Generally speaking, passes request up to parent device
• Few exceptions / misnomers
• bus_generic_probe() invokes device_identify DEVMETHOD

on all child drivers
• Not a suitable device_probe DEVMETHOD, should be called from bus

driver’s attach routine
• Should probably be renamed to bus_identify_children()

Generic Bus Methods: bus_generic_*

• bus_generic_attach() attaches drivers to child devices
• Not sufficient as a standalone attach routine, child devices need to be added

first
• Should probably be renamed to bus_attach_children()

• bus_generic_detach() detaches drivers from child devices
• Not sufficient as a standalone detach routine, child devices need to be

deleted so they are cleaned up
• Should probably be renamed to bus_detach_children()
• Possibly reimplement as bus_detach_children() followed by
device_delete_children()

Generic Bus Methods: bus_generic_rl_*

• Provides methods for child drivers to add/remove device resources
• bus_set_resource, bus_get_resource, bus_delete_resource
• Only needed if child drivers can add device resources

• Provide methods for allocating and releasing resources
• bus_alloc_resource, bus_release_resource
• Suitable if bus device does not sub-allocate from its own resource managers

but depends on parent device to allocate resources described by a resource
list entry

• Bus driver must implement bus_get_resource_list DEVMETHOD

Generic Bus Methods: bus_generic_rman_*

• Provide methods for managing resources allocated from resource
managers
• bus_alloc_resource, bus_activate_resource,
bus_adjust_resource, bus_deactivate_resource,
bus_release_resource

• Bus driver must implement bus_get_rman DEVMETHOD
• bus_activate_resource helper requires bus_map_resource
DEVMETHOD
• bus_deactivate_resource helper requires
bus_unmap_resource DEVMETHOD

Example: PCI Bus Driver

• pciX bus devices represent a logical PCI bus with a parent bridge
device (Host-PCI or PCI-PCI) and child PCI devices
• No resource managers, resources are provided by parent bridge

device
• Except for VFs which are a special case

• Resources for BARs are added while enumerating children during bus
driver attach (resource_list_add)
• BAR resources are also reserved via resource_list_reserve
• Mostly uses bus_generic_rl_* and resource_list_*
• Custom activate/deactivate methods to deal with command register

Example: PCI-PCI Bridge Driver

• Bridges reserve resource ranges on parent bus via window config
registers and sub-allocate from I/O windows for child devices
• Uses resource managers for each I/O window and rman_* to sub-

allocate resources for child devices
• Allocates resource from parent bus for each I/O window
• Resource is active (RF_ACTIVE) but unmapped (RF_UNMAPPED)

• Mapping requests for sub-allocated resources for child devices
resolved by requesting a mapping of the suitable sub-range of the I/O
window resource from the parent PCI bus

Example: PCI-PCI Bridge Driver

0

264

Physical Memory

Window
Resource

Window Resource
Manager

USB BAR0

NIC BAR0

NIC BAR1

BAR0

USB Controller

BAR1

BAR0

NIC

NIC BAR0

Example: nexus Driver

• nexus0 is the root device of a system
• Uses resource managers for each global resource pool (e.g. all

physical memory)
• Direct children must add any resources manually via
bus_set_resource
• Uses bus_generic_rl_* for bus_get/set/delete_resource
• Uses bus_generic_rman_* for other bus resource methods
• XXX: rle for direct children not updated

Example: Bridge Driver with Translation

• Some bridges translate resources (e.g. PCI memory address X
becomes CPU physical X + N)
• Translated regions can be treated like a PCI-PCI bridge window
• Active but unmapped resource allocated from parent (e.g. using CPU

physical address range) for each window
• Translated regions added to resource manager for each window
• Resulting sub-allocated resources need to match what child device needs, e.g.

values to write into PCI BARs
• Mapping a child device resource consists of mapping suitable sub-

range of window resource allocated from parent

Peeking Under the Hood

• devinfo -r shows hierarchy of devices along with resources
reserved by each device
• devinfo -u shows resource managers and allocations within each

manager

Questions?

