
© 2024 Arm AI
-g

en
er

at
ed

 im
ag

e

Growing the SCMI support on FreeBSD

Cristian Marussi – Staff Software Engineer @ ARM
cristian.marussi@arm.com

2 © 2024 Arm

Agenda
whoami (… with a “disclaimer”)
What’s the problem(s) … why SCMI ?
SCMI Overview
Deployments Scenarios
SCMI Messaging
SCMI FastChannels
Coexistence on ACPI systems
Linux SCMI Stack (as a reference example)
Current SCMI Support in FreeBSD
Work in progress
… Next

3 © 2024 Arm

What’s the problem ?
Modern SoC are complex beasts …

• … composed by a number of different logic elements providing a number of functionalities
• … but, usually, not all together at the same time and not at the same level of performance

… a well-known design strategy to maximize efficiency is to have it:
• … partitioned in a number of distinct power/voltage domain islands
• … so that such islands can be selectively configured based on actual runtime needs

… such islands will definitely:
• … have different on-chip users requiring, dynamically, different configurations
• … with such users frequently using different SW stacks with different security needs

… such users, potentially conflicting, configuration requests will be served
• … by some sort of central entity who is in charge of policing

… BUT …

4 © 2024 Arm

I - Why SCMI ?

We don’t have a common language to express such requests so ….

=> a number of protocols have come into existence in the recent past:

TI/SCI, QCOM/RPM, Nvidia/BPMP, ARM/SCPI (!)

SCMI – System Control and Management Interface [1]

→ aims to unify this with a new standard common protocol abstraction ...

“… System Control and Management Interface (SCMI), which is a set of operating system-independent
software interfaces that are used in system management.”

… in these regards, of course, this could come to mind …

[1]: https://developer.arm.com/documentation/den0056/latest/

5 © 2024 Arm

II - Why SCMI ? - https://xkcd.com/927/

6 © 2024 Arm

III - Why SCMI ?
… BUT …

since SCMI is more flexible, easily extensible and transport independent and ...
… thanks to the efforts of Arm, Linaro and our partners …

→ an increasing number of real-world systems have adopted SCMI recently...
– ... in a number of different segments: Mobile / Automotive / Embedded / PCs
– … even amongst the vendors that had previously developed their own protocol

… so this gives us some sort of validation …
… and I am here pestering you about this SCMI thing :P

7 © 2024 Arm

SCMI Overview - I
Based on a client-server model

– one SCMI server, called platform, which can live in a number of places

– multiple SCMI clients, called agents, issuing possibly conflicting requests to the server

– multiple possible transports are possible (in Linux MBOX/SMC/VIRTIO/FFA/OPTEE) [out-of-spec]

– each agent has one or more dedicated communication channel
● agents are identified by the server from the channel they speak from

OS agnostic specification provides protocol interfaces dedicated to system management

Fully discoverable around features, services and available resources (except transport characteristics)

• a mandatory Base protocol to discover the list of implemented protocols (and other things…)

Extensible

• per-domain dedicated sub-protocols (voltage, power, performance) … external contributions possible

• optional vendor protocols

8 © 2024 Arm

SCMI Overview - II
Abstraction and unification of accesses to managed resources

– no need to have hw specific drivers kernel-side
● ...as long as you have them platform side … and you speak SCMI (not necessarily for everything)

Policy enforcing on a per-client basis, SCMI server is the ultimate arbiter:

– can deny, silently or not, any agents’ request based on server configuration

Enhanced security by delegation of policing and actions to a smaller TCB living in a secure world

– CLKscrew https://www.youtube.com/watch?v=0tM2v2SZDxY … server can deny unsafe requests even from rooted OS

Virtualization friendly design

– server can expose a different views of the system to each agent (VMs)
● same shared resource, different ID (ex. Clock) OR different resource, same ID (ex. sensor)

– harmonization of potentially conflicting requests around shared resources

transport independent...not part of the specification really….

https://www.youtube.com/watch?v=0tM2v2SZDxY

9 © 2024 Arm

SCMI Overview - III

10 © 2024 Arm

SCMI Server Deployment Scenarios
Having a number of transports available means the SCMI server can be deployed in a
number of different places:

● in a dedicated MCU, most probably in Secure world
● in a TrustedApplication which run within the context of a TEE OS (like OPTEE)
● in a SecurePartition running at S-EL2, S-EL1 or S-EL0 depending on arch support
● in a dedicated Virtual Machine
● embedded in EL3 TF-A (discouraged…)

A reference SCMI Server platform is implemented in ARM SCP Firmware [1], and a
compliance test suite is available too [2] … but vendors can write their own servers ...

[1] https://gitlab.arm.com/firmware/SCP-firmware
[2] https://gitlab.arm.com/tests/scmi-tests

11 © 2024 Arm

SCMI Messaging - I
Agents/Platform communications use 2 kinds of channels:

● A2P: agent to platform channels carrying the agent initiated transactions, i.e. command issued by the
agent and the immediate responses from the platform

● P2A (optional): platform to agent channels carrying the platform initiated transactions, i.e. delayed
responses and notifications

… and 2 kinds of commands:

● Synchronous Commands - agent issues a command on A2P and the response is immediately delivered
on that same channel, which is kept busy until the request has been served and the reply received.

● Asynchronous Commands - agent issues a command on A2P and an immediate status-only response is
delivered on that same channel: such immediate reply does NOT carry any effective payload but ONLY
the status, so that the channel is freed immediately; the full-response will be delivered later (once
computed) using a delayed response sent on P2A

12 © 2024 Arm

SCMI Messaging - II
Each message is composed by a 32-bit header and an optional payload of <N> 32-bit
words

msg_idtypeproto_idseq_numRES0

31 28 17 9 7 0

Types :: 0 – command/response 2 – delayed response 3 – notification

A response message is built by returning exactly the same header, unchanged, plus any optional payload.
(except for delayed response where the type is changed). Policy around the usage of the seq_num field is
completely in the hand of the agent.

SENS READ ID 1 FLAGS 0x0

SENS READ ID 1234 FLAGS 0x0

SENS READ -4 – NOT FOUND

SENS READ ID 1 FLAGS 0x1

SENS READ 0 - OKSENS READ 0 - OK READING XXX

READ_COMPLETE 0 - OK ID 1 READING XXX

SENS_UPDATE Agent ID - 0 ID 1 READING XXX

A2P A2P P2A

SENS_UPDATE
_NOTIF ID 1 FLAGS 0x1

SENS UPDATE
NOTIF 0 - OK

13 © 2024 Arm

SCMI FastChannels
Beside the standard messaging channels, based on a command-reply pattern,
FastChannels are provided as an alternative messaging mechanism but only for:

● some specific commands in a few protocols
● a specific resource

“A FastChannel is a lightweight unidirectional channel that is dedicated to a single SCMI
message type for controlling a specific platform resource.”

In a nutshell the server can advertise (via regular messaging) some well defined memory
areas where the agent can read/write directly the payload for a well defined command
related to a well defined resource, avoiding the command-reply overhead.

14 © 2024 Arm

SCMI on ACPI Systems
Most of the SCMI Agent support currently needed in Linux/FreeBSD is targeted at
DeviceTree based systems...which is where most of the work is needed

ACPI-based implementations can leverage SCMI protocols to provide platform services
using standard ACPI methods (SCMI specification is kept ACPI compatible by ATG)

As an example, a device may be power managed by ACPI-aware OS using the standard
ACPI control methods.

These ACPI methods can send SCMI Power Management Protocol requests to the
platform to transition the power state of the device.

SCMI MBOX/SHMEM transport channels can be represented as an ACPI Platform
Communications Channel (PCC) of Type 3.

The server on the other end does NOT really know if the request originated from a DT or
an ACPI system…as long as you have some glue code in the ACPI stack (TBD)

15 © 2024 Arm

Linux SCMI Stack ● Layered design
● transport:

● Abstract medium specific details
● MBOX/SMC/OPTEE use a well defined

SharedMemory area to carry the message
● core:

● Message tracking (seq_num)
● Handles replies, timeout, errors, late replies

● protocols:
● Knows how to build the messages for a

specific task
● SCMI driver users:

● Plug into various kernel subsystems (clocks)
● Call into protocol ops (clock_enable)

● 2 test and development facilities in DEBUGFS
● SCMI Raw - inject/snoop messages to:

● test the Server with the compliance suite
● test the basic core messaging functionalities

● scmi-test-driver – invoke scmi_ops to:
● test the SCMI protocol APIs (not upstream)

16 © 2024 Arm

FreeBSD SCMI Stack - I Initial FreeBSD SCMI Support

● Initial commit in 2022
commit 54b96380f5774c1754a0fcf25212fa8e01db74f6
Author: Ruslan Bukin <br@FreeBSD.org>
Date: Mon Dec 19 20:16:18 2022 +0000

 Add support for ARM System Control and Management Interface (SCMI) v3.1.

● added minimal support for
● 1 transport (MBOX)
● “Basic” core facilities (only sync-commands)
● SCMI clocks

● … added support was minimal for a very good reason:
● ONLY 1 SCMI platform (server) available on FreeBSD

→ Morello implementing only Clock protocol
● ...today→ not so many more FreeBSD/SCMI platforms

BUT...

● the Server can now be deployed in a number of places
→ including in some VM or in Userspace

17 © 2024 Arm

FreeBSD SCMI Stack - II Current FreeBSD SCMI Support

...so the first addition from Arm around mid-2024 was:

● Splitting out the transport layer and adding:
● VirtIO transport [1]
● SMC transport

● Restructure a bit of the SCMI Core in preparation of more
complex messaging support (still only sync-cmd…)

Since enabling the use of a virtualized SCMI Server:

→ allows for more complex SCMI development on FreeBSD
SCMI Agent capabilities without real HW available

→ allows anyway the FreeBSD SCMI Agent to be used in
an existing virtualized deployment

[1] https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.html#x1-60400017

18 © 2024 Arm

FreeBSD - Guest SCMI Agent with KVMtool/SCMI_EMU

19 © 2024 Arm

FreeBSD: Guest SCMI Agent with QEMU/SCP

20 © 2024 Arm

FreeBSD SCMI Stack - III FreeBSD SCMI Support – WIP or planned

● Adding SCMI RAW for message injection to enable:

● testing of the SCMI Core stack
● compliance testing of a real Platform server

● Adding SCMI Core support for:

● Asynchronous commands
● Notifications

● Adding Base protocol

● Some SDT(?) traces to dump ongoing SCMI transactions

21 © 2024 Arm

FreeBSD SCMI Stack - IV FreeBSD SCMI Support - NEXT

The current WIP will enable a more complete development
and test environment for SCMI on FreeBSD...so…

What’s NEXT ?

→ Per-protocol transport channels (where possible)
→ Protocol layer abstraction (maybe)
→ Vendor Protocols support
→ SCMI Test Driver
→ More transports (if really required by new HW)

Enabling more SCMI Protocols and related drivers ?
Depends on the availability of related Kernel frameworks on
FreeBSD:

● Power
● SysPower
● Performance: cpufreq(4) / scmi_perf ?
● Sensors ?
● Reset ?
● Voltage ?
● Powercap ?
● Pincontrol ?

22 © 2024 Arm

Questions ?

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
كرًا ش

ধন্যবাদ
תודה

ధన్యవాదములు© 2024 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2024 Arm

	Slide 1
	One Column Slide
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

